ISRAEL JOURNAL OF MATHEMATICS, Vol. 40, No. 2, 1981

NORMAL ERGODIC ACTIONS AND EXTENSIONS

BY
R. C. FABEC

ABSTRACT

We demonstrate that normal ergodic extensions of group actions are character-
ized as skew product actions given by cocycles into locally compact groups. As a
consequence, Robert Zimmer’s characterization of normal ergodic group
actions is generalized to the noninvariant case. We also obtain the uniqueness
theorem which generalizes the von Neumann Halmos uniqueness theorem and
Zimmer’s uniqueness theorem for normal actions with relative discrete spec-
trum.

Rober Zimmer introduced the notions of normal ergodic group actions and
extensions in [18]. He later characterized normal ergodic group actions when the
measure is o-finite and invariant. See [20]. He also conjectured that normal
ergodic extensions of ergodic group actions could be characterized as skew
product actions constructed from cocycles into locally compact groups. Our
intent is to obtain this result. As a consequence we generalize Zimmer’s
characterization of normal ergodic actions to the noninvariant case. We also
obtain the uniqueness theorem; that is we show two normal ergodic extensions
of the same group action which induce equivalent unitary Hilbert bundle
representations are conjugate. This is the generalization of the von Neumann
Halmos uniqueness theorem for ergodic transformations with pure point spec-
trum and Zimmer’s uniqueness theorem for normal actions having relative
discrete spectrum.

Let X be a standard Borel space and let u be a o-finite measure on X. Let G
be a second countable locally compact group. By a Borel action of G on X we
mean a Borel mapping x,g» x - g from X X G to X such that x-e =x and
(x-g)-g:=x-gg: for all x,g, and g.. The measure p is assumed to be
quasi-invariant; that is u - g(E)=u(E - g7") =0 iff u(E)=0. The action of G
on X then induces a Boolean action of G on the measure algebra M(X, p), and
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this action essentially determines the point action on X. When we speak of two
G spaces being conjugate, we shall mean isomorphism of the actions induced on
their measure algebras. We recall that the action of G on (X, u) is ergodic if
there are no proper invariant elements in the measure algebra.

Suppose (X, u) and (Y, v) are G spaces. A G equivariant map p : X = Y with
P«tt = pop '~ v is called an extension of Y to X. The extension p of Y to X
induces a unitary Hilbert bundle representation of Y X G. Namely, let u =
J n,dv(y) be the disintegration of the measure u over the fibers of p. This yields
a direct integral decomposition [® L*(u,)dv(y) of L*(n). Since u-g~pu,
Uy 8~ My a€. y for each g Define R(y, g): L*(uy.,)— L*(p,) by

RO, 8)f(x)= 724 (xg)"f(x - ).
Yy

Then R(y, g) is unitary a.e. y for each g and satisfies R(y, 8:)R(y - §1,82) =
R(y, g:82) a.e. y for all g, and g.. R is called the induced Hilbert bundie
representation of Y X G. The extension X of Y given by p is called normal if
there exists a Borel field x » U(x) of unitaries with U(x) mapping L*(u,)) to a
fixed Hilbert space H such that U(x)R(p(x),g)U(x -g)"' =TI a.e. x foreach g.

An action of G on X is normal provided it is a normal extension of the trivial
action. That is there is a Borel field x » U(x) of unitaries from L*(u) to a fixed
Hilbert space H such that U(x)R(g)U(x - g)' = I a.e. x for each g, where here

RE)(x) =702 (x-)"f(x ).

Suppose now p’: (X', u’)— Y is another extension of Y. It induces a unitary
Hilbert bundle representation R’ of Y X G on the bundle y » L*(u,;). The
representations R and R’ are said to be equivalent if there exists a Borel field
yr U(y) of unitaries from L*(u,) to L*(u;) such that U(y)R(y,g)=
R'(y,g)U(y - g) a.e. y for each g.

We recall a cocycle from Y X G into a locally compact group is a Borel
function a from Y X G into the group satisfying a(y, g.)a(y - g, 82) = a(y, £:82)
a.e. y for each g, and g,.

We can now state our results.

THEOREM 1. Let p : X — Y be an ergodic normal extension. Then there exists
a second countable locally compact group H and a cocycle a from Y X G into H
such that-the action of G on X is conjugate to the action of G on (H X Y, Haar
measure X v) defined by (h,y)-g =(ha(y,g),yg). Furthermore, under the
conjugacy, p is carried to the projection (h,y)» y.
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THEOREM 2 (Uniqueness Theorem). Suppose p: X-—>Y andp':X'— Y are
normal ergodic extensions and induce equivalent unitary Hilbert bundle represen-
tations of Y X G. Then the G actions on X and X' are conjugate.

CoROLLARY 1. Suppose the action of G on (X, ) is normal and ergodic. Then
there is a locally compact group H and a continuous homomorphism a from G into
H with dense range such that the action of G on X is conjugate to the action of G
on (H, Haar measure) defined by h - g = ha(g).

CoOROLLARY 2. Suppose X and X' are normal ergodic G spaces which induce
equivalent unitary representations of G. Then they are conjugate.

Demonstration of Theorem 1

Before beginning the proof of Theorem 1 we give a preliminary result. Let Y
be a standard Borel space with finite measure v. Let $(Y, v) be the set of all
Borel isomorphisms ¢ of Y such that ¢ ,v ~ v, where we identify any two equal
a.e. Give #(Y, v) the smallest Borel structure for which ¢ » f fo o(y)h(y)dv(y)
is Borel for all real valued bounded Borel functions f and h on Y. Then $(Y, v)
is Borel isomorphic to the strongly closed subgroup of the unitary group of
L*(Y, v) consisting of those unitaries U such that U1=0 and UL*(Y,»)U ' =
L7(Y, v). The isomorphism is given by the map ¢ — L, where

—1\ 1/2
Lf= ((_1#_;;90_1) / fee™

ProposiTiON 1. Let p: X — Y be an extension of ergodic G space Y. Then
there exist a standard Borel space S, a finite measure m on S, a Borel isomorphism
¢:SXY—>X and a Borel cocycle a : Y X G — $(S, m) such that

(@ emxv~p,

() peo(sy)=yae sy,

©) e(a(y,8)"(s),y g)=w(s,y) g ae. 5.y for each g.

Proor. Sketch. Let u = [ u,dv(y) be the disintegration of u over the fibers
of p. Each p7!(y) is a standard Borel space with measure u,. For each n, an
integer, let J, be a standard measure space with | n| atoms and continuous part
only if n =0. Then Y, ={y : (p”'(y), uy) is essentially isomorphic to J.} is a G
invariant Borel set. Since the action of G on Y is ergodic, Y, is conull for some
n. Using the von Neumann selection, theorem, there is a Borel field y » ¢, of
functions from p~'(y) to J, such that ¢, is an isomorphism and carries the
measure for J. to a measure equivalent to the measure u, for a.e. y in Y,. By
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“integrating” the ¢,’s, one obtains a Borel function ¢ :J, X Y — X which is
essentially an isomorphism and carries the product measure on J, X Y to a
measure equivalent to p. Let $=J, and m be the measure of J.. The rest
follows easily. Q.E.D.

Suppose now (X, u) is a normal ergodic extension of Y. By Proposition 1, we
may assume X =S XY, u=mXu, and (5,y) g =(b(y,g)'(s),y - g) ae. s,y
for each g where b : Y X G— $(S, m) is a Borel cocycle. One then can note that
the induced unitary Hilbert bundle representation of Y X G is then actually a
unitary representation of Y X G on L*(S, m). Namely, R(y, g) = Ls,,. Since
we are assuming the extension is normal, one has a Borel function
(s,y)» U(s, y) where each U(s, y) is a unitary operator from L*(S, m) onto a
fixed Hilbert space H that satisfies U(s, y)R(y, g)U(b(y,g)'s,y -g) "' =1 ae.
s,y for each g

Eftros in [1] showed there exists a standard Borel structure on the space ¥ of
von Neumann algebras on H such that s,y » M(s, y) = U(s, y)L*(S, m)U(s, y)™'
is Borel. Since R(y, g) = Ly.o) € (S, m), it follows that M((s,y)-g) = H(s,y)
a.e. 5, y for each g. Since the G action on S X Y is ergodic, (s, y) is constant
a.e. s,y. Hence there exists a unitary V from H to L*(S,m) such that
VU(s,y)L*(S,m)U(s,y)' V™' = L*(S,m) a.e. s, y. By redefining U(s, y) to be
VU(s,y) and redefining on a set of measure 0, we may assume
U(s,y): L*(S,m)— L*(S,m) and U(s, y)L*(S,m)U(s,y) "' = L"(S,m). Now
for each s, y, there exists an essentially unique Borel complex valued function u;,
on S with |u,|=1 such that w,-U(s,y)1=0. Let M, f=u,, f for
fE€ L*S, m). Then M, U(s,y) € $(S, m) for every s, y. Hence there exists a
¢.y € (S, m) such that U(s,y)=M;, L, . Both s,y» M, andsyw=L, are
strongly Borel. Since U((s,y)-g) = U(s,¥)Ls.q), WE see Mu( e =Ma,, and
L yiyy-s= Le, Loy a.€. 3,y for each g. We hence redefine U(s, y) tobe L, . We
have @,).¢= ¢.,b(y, g) a.e. s,y for each g. Since s,y » ¢,, and 5,y » ¢, are
Borel mappings of $ X Y into $(S, m), there exist Borel functions ¢ and ¢
from $ X Y X S into S such that ¢(s,y,¢) = ¢,,(f) and ¢ (s, y, 1) = @, (¢) a.e. ¢
a.e. s, y. Furthermore, ¢ and ¢ ' satisfy @ (b(y,g)'s,y ' & t) = ¢(s,y, b(y, g)1)
and ¢ '(b(y,g)'s,y - & 1)=b(y,g8) "¢ '(s,y, 1) a.e. t ae. 5,y for each g

ProposiTioN 2. U(s, y)U(r,y) ' = U(e.loe(r,y,5),2)U(r,z) " a.e. sy, 1, 2.

PrOOF. Define F(x,t)= U(¢ '(x,t), mx)U(x)™" for xES XY and tES.
Then F is Borel and
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F(x-g)=U(e '(x -8 1), mx - g)U(x -g)"
=U(b(m:x,8) "¢ 7' (x,1), mx - g)U(x - g)'
= U(e (x, 1), m2X)L pmpegyL b 'y U(X) !
= F(x,1) a.e. x a.e. t for each g.

Since G is locally compact, it follows x — F(x, t) is G invariant for a.e. &. Hence
there exists a Borel function A : T — $(S, m) satisfying A(t) = F(x, t) a.e. x, .
Choose r,zESXY so that ¢, =¢(1,y,'), ¢ry=¢ '(ry,") ae. y, @. =

o(rz), en=¢'(rz-), Ul '(rhy1),y)Ury)" =A() ae ty and
U(e'(r,2,1),2)U(r,z) ' = A(t) a.e. t. Hence U(t, z2)U(r,z) "' = A(e(r, 2, 1)) =

U(e '(,y, o(r, 2,1), y)U(r, y) " a.e. t, y. The results follows. Q.E.D.
Choose r,z €S X Y such that:

(a) Pry = e(r, Y, ) a.c.y,
®) ery=¢7'(ry,-) ae. y,
© Uy)U(ry) " =Ulp:op(ny,t),2)U(rz)" ae. ty.
Define U(t,y)= U(r, ) U(t, y)U(r, y) ' U(r, 2). Note U(r,y)=1 for all y.

Lemma 3. Ut y)=U(erice(nyt),2z) ae. t,y.
PROOF.
U, y)= U, 2)" U, y)U(r, y) " U(r, 2)
=U(r,z) ' Ulezoo(ny 1), 2)U(r z) ' U, 2)
=Ulpriopry,t),z) ae. ty.

Lemma 4. U((t,y)-g8)=U(t,y)Loe) a.e. t,y for each g, where a(y,g)=
@rio @y ob(y, 8)o(@rio@ry ) s

PROOF.

Ut y)-8)
=U(rz)"U((t,y) g)U(ry -g) 'U(r, z)
=U(r,z)"U@t,y)U(ry) ' U(r2)U(r,z) ' U(r,y) Lo U(r,y - 8) " U(r, 2)
=U(t,y)Lave  ae. LY.

Define $EF(SXY,mXxv) by ¥(s,y)=(e2°0(rys)y). Clearly
(8 Y)=(@7'(n Y, ¢ (), ¥)-

LemMa 5. ¢(¥7'(s,y)-g)=(a(y,8) 's,y *g) a.e. s,y for each g.
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PROOF.
Y(b(y,8) 's,y-g)=(pr:oe(r,y g b(y,8)'s),y"8g)
=(@r°@ny-°b(1,8) P00 0000y (5), Y 8)

=(a(y,g) 'e:zo0(r,y,5),y " 8)- Q.E.D.
Hence we see (s, y), g~ (a(y,g)'s, y - g) defines a Borel almost action of G
on § X Y conjugate to the action of G on X.
Define Von SXY by V=Uey™".

LEMMA 6. V(a(y,g)'s,y-g)= V(s,¥)Laos a-e. s,y for each g.
PROOF.
Via(y.8)'s,y-8)=UW (a(y,8) s,y "))
=UW () 8)
=UW'(5,y)Laysy  a€. Sy Q.E.D.
ProrosiTION 7. V(s,¥)= V(s,2) a.e. s,y.

ProOOF.
Vis,y)=U-¢7'(s,y)

= U(e (1, ¢z (5))r y)
=Uleioo(ny, 0 '(ny, 0. (s)), 2)
= U(¢r!o@.(s),z) = U(s, 2)

= V(s z)

a.e. 5,y where the equalities follow by Lemma 3 and (a) and (b).

We hence have the following situation: the action of G on X is conjugate to
the action of G on SXY defined by (s,y) g =(a(y,g)"'s, y-g) where
a:YXG— J(S, m)is Borel; p is carried by the conjugacy to m»; and there
exists a Borel map U : § — 4(S, m) such that U(a(y, g)'s) = U(s)L.yq a.€. s, y
for each g.

Let U(s)=L,, where ¢, € #(S, m). There exist Borel functions ¢ and ¢
mapping § X § to S such that (s, ) = ¢, (1), ¢ '(s, 1) = ¢, '(t) a.e. t a.e. 5. Since
Ula(y,8)'s)=U(s)Lapsy ae. 8% e(sa(ygt)=e¢(a(y.g)'st) and
a(y,8) ¢ (s,)=¢ '(a(y,g)'s,1) ae. syt

LemMmA 8. There exists a Borel function A :S— 9(S,m) such that
Ue (s, 1)) = A(HU()U(s) ace. st
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ProoF. Define F(t,s,y)= U(e (s, 1))U(s) ' U@) ™"
F(ta(y.g) sy 8)=Ule (a(y,g) s ) U(a(y8)'s) " U(®)"
=Ula(y,g) "¢ '(s;)U(a(y,g) 's) ' U()"
= U(e™'(s, ) LevLavaU(s) " U@)™
=F(t,sy) a.e. IS5y
The result follows by ergodicity. Q.E.D.
CorOLLARY 9. U(e(s,1))=A(e(s, 1)) ' U@U(s)" a.e. st

ProrosiTion 10. U may be modified so that U(e~'(s, 1)) = U@)U(s) and
Ue(s, )= U@®)U(s)" a.e. s,t.

Proor. Let S; be a conull Borel subset of S such that ¢, = ¢(s,*), ¢:' =
¢7'(s,7), Ule (5, 1)) = A()U(1)U(s), and U(e(s, 1)) = A(e(s,1)) " U()U(s)™
ae. tif s€S,.

Choose r € S,. Define U(s) = U(r) " U(s). Hence &, = ¢, ' ¢,. Take &(s, t) =

e lop(s,t) and ¢ (s, 1) =@ 7'(s, @ (1))
Let s € S,.

U(e (s, 1) = U) ' Ule™'(s, ¢ (1))
=U(r) " Ae(r, )U(e(r, ) U(s)
=U(r) " Ale(rn ) A(e(r, ) U@U() ' U(s)
=U0U@U(s) ae. t

Hence the first statement holds; the second is verified similarly.
We define Borel almost G actions - and *on X =S XS X Y by (s,t,y)- g =

(a(y,8)'s,a(y,8) 'ty g) and (y,5,y)*g =(a(y,8)'s, 6 y).
PROPOSITION 11. s+ ¢7'(s,t) is measure class preserving m a.e. t.

Proor. Define G and H in .95(X’, mXxXmXv)by G(s, t,y) = (s, ¢(s, 1), y) and
H(s,t,y)=(s, ¢ '(s5,1),y). Clearly H' = G. Also

G((s,t,y)-8)=G(a(y,8) 's,a(y, 8) 'ty " 8)
=(a(y,8) 's elaly,g) s al(y,g)'t),y g)
=(a(y,8) s, @(s,1),y - 8)
=G(x,t,y)*g a.e. s, t,y foreach g.
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m: X — S gives an ergodic deomposition of the action * - . Hence m,° G gives
an ergodic decomposition of the action on X. The map A defined by
A(s, 1, y)=(t, s y) preserves the action - ; hence m.° G ° A gives another ergodic
decomposition of the action -. By uniqueness of ergodic decompositions (see
[12]) there exists a ¢ in $(S, m) such that Yyome G =meGeA. Let m Xm Xy
be disintegrated over 7,2 G; namely m X m X v = [ u,dm(t) where each p, is
concentrated on (m,°G)'(t) m a.e. t. Then m X m X v = [ uy-1ndif ,m(t) and
pe-ty is concentrated on (meG) '(¢7'(t))=(YomeG)'(t) ae. t But
mxmxv=A,(mxmxv)=[A,udm(t) and A, u is concentrated on
Ao G) (1) =(me G AY (1) = (Yo mo GY'(t) ace. t. Hence A . ~ o'y
a.e. t Since A=A"", A, u ~ o a.€. L

Now mxmXv=[mXeg Xvdm(t). Hence mxmXy-~
fH, (mXe xv)dm(t) and H,(m X¢g Xv) is concentrated on Hm;'(t)=
(meG)'(t) ae. t Hence H,(mXeXv)~u ae t Hence
A H, (mXxXexXv)~H/ (mXemXv)ae. t.

Suppose A H,(m X & X v)~ H,(m X &g,qX v). Then

m{s: ¢ (1) EE}>0iff (mxe xv)(H'(SXEXY))>0
iff (mXxexv)(H'AT(EXSXY)>0
iff (m X ey X V)(H(EXSXY)>0
iff m(E)>0. Q.E.D.

Define ¢ : S— $(S,m) by ¢(s)=¢,. Let m*=¢p, m.

ProposITION 12. For m a.e. t, the measure class of m* is invariant under the
mappings ¢+ Yo and = @ o Y.

Proor. Since U()U(s)=U(¢7'(5,1)), @ °¢: = @oisry a.€. s, t. Choose ¢
such that @ °@. =@, 1w, @0 =@etes)y ¢ (LS)=9:'(s) ae. s and
s @ '(s,t) preserves the measure class of m. Then m*(N)>0 iff
m{s:g. €EN}>0 iff m{s:¢, ., EN}>0 iff m{s:@op. EN}>0 iff
m*{y: oY EN}>0. Also m*(N)>0 iff m{s:¢, 1, EN}>0 iff
mi{s:@.c@ EN}>0iff m*{ : o, € N} >0. Q.E.D.

TueoREM 13. Let H={¢y € F(S,m): 7w 7°y and 7+ Y1 preserve the
measure class of m*. Then H has a second countable locally compact topology

compatible with the group structure such that m* is equivalent to Haar measure on
H.
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ProOF. Let M be the space of probability measures on $(S, m) equipped
with smallest Borel structure such that u = w(E) is Borel for each Borel set E in
J(S, m). Then M is standard Borel space and the actions of $(S, m) defined on
M by p-9(E)=u(Ee™") and ¢ - u(E)= (¢ 'E) are Borel. Furthermore,
{n € M : p ~ m*}is Borel by lemma 1.1 of [11]. Hence H is a Borel subgroup of
the Polish group (S, m). By Proposition 12, m* is concentrated on H. By
lemma 8.33 of [15], m* is equivalent to a right invariant g-finite measure on H.
The result follows by theorem 8.33 of [15]. Q.E.D.

PrOPOSITION 14. a(y,g)E€ H v a.e. y for each g.

PROOF. ¢ — oa(y,g) preserves the measure class of m* v a.e. y, for
©.°a(y,8)= @apyerts a€. s,y and a(y g)E F(S, m). Furthermore, ¢+
a(y,g)°y is a composition of the maps ¢ ¢, Yy yca(yg) =
yoa(yg g "), and y » ¢ of H, and hence preserves the measure class of m* v
a.e.y. Q.E.D.

ProposITION 15. If y EH, ¢, o = @u1s) M a.e€. 8.

PrROOF. {: .o = @1 a.e. s} is a Borel subgroup of H which is conull
SINCE @ © P = @ o141s) = Py sy 3.€. S, L. Q.E.D.
Define a Boolean action of H on M(S,m) by E - ¢ = ¢ '(E).

PrOPOSITION 16. The Boolean action of H on M(S, m) is ergodic.

Proor. Suppose EEM(S,m) and E-¢y=E for all y EH. Let W=
EXYEM(SXY,mXv). Since a(y,g) € H a.e. y for each g, W is invariant
under the ergodic G action (s, y)g = (a(y, g)7's,y - g). Hence E=0or E = §.

Q.E.D.

There is no loss in assuming a(y, g) is in H for all y, g for one can redefine on
a set of measure 0 and note that {g:(s,y) g =(a(y,g)'s,y-g) ae. s,y}isa
conull multiplicatively closed subset of G. We may also assume ¢, is in H for all
s by redefining on a set of measure 0.

We now conclude the proof of Theorem 1. ¢ is a Borel map from § into H
such that ¢, m =m* and @, °o¢ ' = ¢ for any ¢ in H. Hence ¢ is H
equivariant from the Boolean action of H on S to the action of right translation
of H on H. In fact,

¢(EY)={s:0.°¢ 7 = uyEE}=y ¢ (E)=¢ (E) ¥

But any H equivariant map into the H space H is essentially one-to-one.
Define J: SXY—>H XY by J(s,y)=(¢(s),y)- Then J (m X v)=m*X v, J
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is  essentially  one-to-one, and  J((s,y)-g)=J(a(y.g)'s,y-g)=

(Parer'»y ' 8)=(ps0a(y,8),y -g)=(¢a(y,g)y-g) ae. s,y for each g. This
concludes the proof.

The uniqueness theorem

Theorem 2 follows from Theorem 1 and the following proposition. Let H and
K be second countable locally compact groups; let (Y, ») be a G space; and let
a:YXG—=Handb:Y X G— K be cocycles. Suppose the almost actions of G
on HXY and KXY defined by (h,y)-g =(ha(y,t),y-g) and (k,y)-g=
(kb(y, g),y - g) are ergodic.

ProposiTION.  If the unitary representations of Y X G induced by the extensions
(h,y)»y and (k,y)»y are equivalent, the G spaces HXY and K XY are
conjugate.

Proor. By $(H) we shall mean $(H, Haar measure). The representation of
Y X G induced by (h,y)» y is (¥, g) » R.(. where R, ,, is the unitary operator
on LZ(H) defined by Rﬂ(y's)f(h) = f(ha ()’, g)) Hence Ra(y.g) = L'a(y.g)“‘ where
r,(h')=h'h. Similarly (y,g)"» Ry, =L
Y X G induced by extension (k,y)~ y.

Since the induced representations are equivalent, there exists a Borel map
y » W(y) where W(y) is a unitary from L*(H) to L*K) which satisfies
W(y)Raoer = Roy W(y - g) a.e. y for each g.

Define U(k,y)=R.W(y). Set M(k,y)= U(k,y)L*(H)U(k,y)". M is G
invariant. By ergodicity, there exists a unitary V from L*(K) to L*(H) such that
VU(k,y)L*(H)U(k,y)'V™'= L*(H) a.e. k, y. Hence for a.e. k, y there exists a
Uy in L*(H) with |u, |=1 and a ¢, in $(H) such that VU(k,y)=M,, L,, .
But VU((k, )" g) = VRRo.s W(y - 8) = VRW(¥)Ru0.r = U(k, ¥)Rug) 2.
y,8 Hence M,, =M, = and @u,) = @y lage:t a.€. k,y for each g
Therefore we may assume VU(k,y)=L, for all k and y and @u,) .=
@ry °Tawrgy' a.€. k, y for each g. Hence ¢iy(h)a(y, 8) = ¢uy o(h) a.e. h a.e. k,y
for each g.

Choose h, such that ¢i)(ho)a(y, 8) = @y ¢(ho) a.c. k, y, g Define F(k,y) =
Toilthy ' © @ry. Then

, is the unitary representation of

Toiy.g)~

— —1 — -1 _
F(k’ Y) “8 = Tatrg) 'eiythe) O P yy g = Torling)™ Fage) ' Tagyng)Phy = F(k’ )’) a.c. k’ y-

By ergodicity, there exists an A in $(H) such that F(k,y)= A a.e. k, y. Hence
A@ry = Foi\hy a.€. k, y. Define c(k, y) = @iy(ho). Then Agiy = rwyyt a.e. k, y.
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We then have L.VU(k,y) = R.«,) 2.€. k, y. Redefining V to be L,V, we see
there exists a unitary V from L*(K) to L*(H) such that VR,W(y) = R.q,, a.c.
k,y. By symmetry there exists a V' from L*(H) to L*(K) such that
V'RWW(y)™" = Ry, a.e. where d : HX Y — K is Borel.

We claim VR,W(y) = R.«,, for all k a.e. y. It suffices to note thatif R, — L,
strongly, then L, = R, for some a. Also one has V'R,W(y)™' = Ryu,, for all h
a.e. y.

Hence VV'R.W(y)"' = VRupy) = VRuoy, W(¥)W(y)" = Recatmyn W(y)™
for all h a.e. y. Hence VV'R, = R ymy.y for all h a.e. y. Hence VV'=
R umyym— = Ry a.e. y.So c(d(h,y), y) = hoh. Similarly d(c(k, y), y) = kok a.e.
y. By redefining V to be R,;V, one can see one may assume h, = e. Hence
c(d(h,y),y)="h for all h a.e. y. But VRRW(y)=R.«,, and V'R.W(y)"' =
Rupy for all k and h a.e: y implies VRyx,, W(y) = R, for all h a.e. y. Hence
V'=V'andd(c(k,y),y)=k forallk a.e.y.Hencec,: K—H and d, : H—> K
defined by ¢, (k)=c(k,y) and d,(h)=d(h,y) are Borel isomor-
phism inverse to one another for a.e. y. Furthermore, since VR, W(y - g) =
VRiW(y)R.uye 2.€. k, y, c(kb(y, 8),y - g) = c(k,y)a(y, g) a.e. k, y for each g.

Let mx be a right invariant Haar measure on K. We let #(H) be the space of
all measures on H finite on compact sets. Let #(H) have smallest Borel
structure such that u = u(E) is Borel for any Borel subset of H. Since H is
second countable and locally compact, #(H) is a standard Borel space. Define
m(h,y)=(c, ymx)h™" where puh'(E)= u(Eh). Then h,y » m(h,y) € M(H) is
Borel. Furthermore,

m(ha(y,g),y - 8)(E) = (¢, ssmx)(Eha(y, g))
=mgi{k:c(k,y - 8g) € Eha(y, g)}
=mg{k : c(kb(y, 8),y - §) € Eha(y, 8)}
=m{k : c(k,y) € Eh}
=m(h, y)(E)
a.e. h, y. Hence there is an my; € M(H) such that m(h,y) = my a.e. h, y. Hence
¢, «Mxh™ =my ae. h ae. y. Therefore c, ,mch™ = my for all a.e. y. Hence
CyxMx =my a.e. y and my is right invariant; hence my is a Haar measure.

Define C: K X Y—H X Y by C(k,y) = (c(k, y), y). Then C is a Borel mapping
which is essentially one-to-one, and C,(mx X v) = my X v. Furthermore
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C(k,y)-g)=(c(kb(y,8),y " 8).y 8)
=(c(k,y)a(y. 8),y " 8)
=C(k,y) g a.e. k,y foreachg.

Hence the actions are conjugate. Q.E.D.
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