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NORMAL ERGODIC ACTIONS AND EXTENSIONS 

BY 

R. C. FABEC 

ABSTRACSI 

We demonstrate that normal ergodic extensions of group actions are character- 
ized as skew product actions given by cocycles into locally compact groups. As a 
consequence, Robert Zimmer's characterization of normal ergodic group 
actions is generalized to the noninvariant case. We also obtain the uniqueness 
theorem which generalizes the von Neumann Halmos uniqueness theorem and 
Zimmer's uniqueness theorem for normal actions with relative discrete spec- 
trum. 

Rober  Zimmer introduced the notions of normal ergodic group actions and 

extensions in [18]. He later characterized normal ergodic group actions when the 

measure is or-finite and invariant. See [20]. He also conjectured that normal 

ergodic extensions of ergodic group actions could be characterized as skew 

product actions constructed from cocycles into locally compact groups. Our 

intent is to obtain this result. As a consequence we generalize Zimmer's  

characterization of normal ergodic actions to the noninvariant case. We also 

obtain the uniqueness theorem; that is we show two normal ergodic extensions 

of the same group action which induce equivalent unitary Hilbert bundle 

representations are conjugate. This is the generalization of the von Neumann 

Halmos uniqueness theorem for ergodic transformations with pure point spec- 

t rum and Zimmer's  uniqueness theorem for normal actions having r e l a t ive  

discrete spectrum. 

Let X be a standard Borel space and le t /z  be a or-finite measure on X. Let  G 

be a second countable locally compact group. By a Borel action of G on X we 

mean a Borel mapping x, g ~, x �9 g from X x G to X such that x �9 e = x and 

(x 'gl) .  g2 = x 'gig:  for all x, gl and g2. The measure /z is assumed to be 

quasi-invariant; that is /z  �9 g(E)=-tz(E" g-l)=0 i f f /x (E)  =0 .  The action of G 

on X then induces a Boolean action of G on the measure algebra M(X, tz), and 
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this action essentially determines the point action on X. When we speak of two 

G spaces being conjugate, we shall mean isomorphism of the actions induced on 

their measure algebras. We recall that the action of G on (X, g )  is ergodic if 

there are no proper invariant elements in the measure algebra. 

Suppose (X, # )  and ( Y, v) are G spaces. A G equivariant map p : X--* Y with 

p . g  = g o p - 1  v is called an extension of Y to X. The extension p of Y to X 

induces a unitary Hilbert bundle representation of Y x G. Namely, let g = 

f ~ d v ( y )  be the disintegration of the measure ~ over the fibers of p. This yields 

a direct integral decomposition .(eL2(#y)dv(y) of L2(#). Since g . g - g ,  

#y . g - # y . g  a.e. y for each g. Define R(y,g):L2(~.s)---)L2(~y) by 

d~,.~ (xg)~nf(x. g). R(y, g)f(x) = dlz, " g 

Then R(y,g) is unitary a.e. y for each g and satisfies R(y, gl)R(y "g~,g2) = 

R(y, glg2) a.e. y for all gl and g2. R is called the induced Hilbert bundle 

representation of Y x G. The extension X of Y given by p is called normal if 

there exists a Borel field x ~ U(x) of unitaries with U(x) mapping L2(~e~)) to a 

fixed Hilbert space H such that U(x)R(p(x), g)U(x, g)-~ = I a.e. x for each g. 

An action of G on X is normal provided it is a normal extension of the trivial 

action. That is there is a Borel field x ~ U(x) of unitaries from L2(/J,) to a fixed 

Hilbert space H such that U(x)R(g)U(x. g)-~ = I a.e. x for each g, where here 

dtx (x .g) ' /Zf(x .g) .  R (g ) f ( x )  = dl~ " g 

Suppose now p ' :  (X', I~')--) Y is another extension of Y. It induces a unitary 

Hilbert bundle representation R'  of Y / G  on the bundle y ~L2( /~ ) .  The 

representations R and R '  are said to be equivalent if there exists a Borel field 

y H, U(y)  of unitaries from L2(/6) to L2(/~) such that U(y)R(y ,g )=  

R' (y ,g)U(y  .g) a.e. y for each g. 

We recall a cocycle from Y x G into a locally compact group is a Borel 

function a from Y x G into the group satisfying a(y, g~)a(y �9 g~, g2) -- a(y, g~g2) 

a.e. y for each gl and g2. 

We can now state our results. 

THEOREM 1. Let p : X--* Y be an ergodic normal extension. Then there exists 

a second countable locally compact group H and a cocycle a from Y x G into H 

such that.the action of G on X is conjugate to the action of G on (H x Y, Haar 
measure x r)  defined by (h, y)-  g = (ha(y, g), y . g). Furthermore, under the 
con]ugacy, p is carried to the projection (h, y) ~ y. 
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THEOREM 2 (Uniqueness Theorem). Suppose p : X---~ Y and p' : X'--~ Y are 

normal ergodic extensions and induce equivalent unitary Hilbert bundle represen- 

tations of Y x G. Then the G actions on X and X '  are conjugate. 

COROLLARY 1. Suppose the action of G on (X, Iz ) is normal and ergodic. Then 

there is a locally compact group H and a continuous homomorphism a from G into 

H with dense range such that the action of G on X is conjugate to the action of G 

on (H, Haar measure) defined by h �9 g = ha(g). 

COROLLARY 2. Suppose X and X '  are normal ergodic G spaces which induce 

equivalent unitary representations of G. Then they are conjugate. 

Demonstration of Theorem 1 

Before beginning the proof of Theorem 1 we give a preliminary result. Let Y 

be a standard Borel space with finite measure v. Let ,~(Y, v) be the set of all 

Borel isomorphisms q~ of Y such that q~, v ~ v, where we identify any two equal 

a.e. Give ~ ( Y, v ) the smallest Borel structure for which q~ H, f f o q~ (y)h (y)dv (y) 

is Borel for all real valued bounded Borel functions f and h on Y. Then ~ ( Y ,  v) 

is Borel isomorphic to the strongly closed subgroup of the unitary group of 

LE(y, v) consisting of those unitaries U such that U1 => 0 and UL~(Y, v ) U  -1= 

L| v). The isomorphism is given by the map q~-*L~ where 

t . .  = dv ] 

PROPOSITION 1. Let p : X--~ Y be an extension of ergodic G space Y. Then 

there exist a standard Borel space S, a finite measure m on S, a Borel isomorphism 

: S x Y--* X, and a Borel cocycle a : Y x G ---) : ( S, m ) such that 

(a) q~. m x v - / z ,  

(b) poq~(s ,y )=y  a.e. s,y, 

(c) q~(a(y, g)-~(s), y �9 g) = q~(s, y) .  g a.e. s,,y for each g. 

PROOF. Sketch. Let/z  = f / ~ d v ( y )  be the disintegration of/x over the fibers 

of p. Each p-l(y) is a standard Borel space with measure /zy. For each n, an 

integer, let J, be a standard measure space with In [ atoms and continuous part 

only if n _-> 0. Then Y. = {y : (p-~(y), ~ )  is essentially isomorphic to J,} is a G 

invariant Borel set. Since the action of G on Y is ergodic, Y, is conull for some 

n. Using the yon Neumann selection, theorem, there is a Borel field y ~ q~y of 

functions from p-~(y) to J, such that q~y is an isomorphism and carries the 

measure for J, to a measure equivalent to the measure/zy for a.e. y in Y,. By 
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"integrating" the ~0y's, one obtains a Borel function ~o :Jn x Y--~ X which is 

essentially an isomorphism and carries the product measure on J, x Y to a 

measure equivalent to /~. Let S = Jn and m be the measure of J,. The  rest 

follows easily. Q.E.D. 

Suppose now (X,/z) is a normal ergodic extension of Y. By Proposition 1, we 

may assume X = S x Y, /~ = m x v, and (s, y ) .  g = (b(y, g)-~(s), y �9 g) a.e. s, y 

for each g where b : Y x G--*3~(S, m) is a Borel cocycle. One then can note that 

the induced unitary Hilbert bundle representation of Y x G is then actually a 

unitary representation of Y x G on L2(S, m). Namely, R ( y , g ) =  Lbcy.~. Since 

we are assuming the extension is normal, one has a Borel function 

(s, y) ~-, U(s, y) where each U(s, y) is a unitary operator  from L2(S, m) onto a 

fixed Hilbert space H that satisfies U(s, y)R(y,  g)U(b(y, g)-Is, y .  g ) - l =  I a.e. 

s, y for each g. 

Effros in [1] showed there exists a standard Borer structure on the space o//. of 

yon Neumann algebras on It such that s, y ~ d/(s, y) = U(s, y)L=(S, m)U(s, y)-~ 

is Borel. Since R(y,  g) = Lb~y.~ E 5~(S, m), it follows that ~/((s, y ) -  g) = At(s, y)  

a.e. s, y for each g. Since the G action on S x Y is ergodic, M(s, y)  is constant 

a.e. s,y. Hence there exists a unitary V from H to L2(S,m) such that 

VU(s, y)L~(S, m)U(s, y)- '  V -~ = L~(S, m) a.e. s, y. By redefining U(s, y) to be 

VU(s,y) and redefining on a set of measure 0, we may assume 

U(s, y) :  L2(S, m)-->L2(S, m) and U(s, y)L~(S, m)U(s, y)-~ = L~(S, m). Now 

for each s, y, there exists an essentially unique Borel complex valued function u,.y 

on S with lu~.yl=-I such that u~y.U(s,y)l>-O. Let M~f=u~.y . f  for 

f E L2(S, m). Then M~,.U(s, y) E ~r m) for every s, y. Hence there exists a 

q~.y E 3r(S, m) such that U(s, y) = M % L , , .  Both s,y ~ ,M.~  and s,y ~ ,L ,~  are 

strongly Borel. Since U((s,y).g)= U(s,y)Lbty, s~, we see Ma,,., =Ma,.,  and 

L~t,.y~ = L~,.Lbty.~ a.e. ~, y for each g. We hence redefine U(s, y) to be L,... We 

have ~t~.y~ g = q~,yb(y, g) a.e. s, y for each g. Since s, y ~, q~y and s, y ~, q ~  are 

Borel mappings of S • Y into 5(S,  m), there exist Borel functions ~ and q~-~ 

from S x Y x S into S such that ~(s, y, t) = ~p~.~ (t) and q~-~(s, y, t) = q ~ ( t )  a.e. t 

a.e. s, y. Furthermore,  q~ and q~ ~ satisfy q~(b(y, g)-~s, y �9 g, t) = q~(s, y, b(y, g)t)  

and ~-~(b(y, g)-~s, y .  g, t) = b(y, g)-~-~(s ,  y, t) a.e. t a.e. s, y for each g. 

PROPOSITION 2. U(s,y)U(r,y) -1 = U(q~o~o(r,y,s),z)U(r,z) -1 a.e. s, y, r, z. 

PROOF. Define F(x, t) = U(~0-~(x, t), Ir2x)U(x) -~ for x ~ S x Y and t E S. 

Then F is Borel and 
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F(x  . g, t) = U ( { ~ - I ( x  �9 g ,  t), "7['2X " g ) U ( x  " g)--' 

= U(b(~2x,  g)-'~p-l(x, t), "ri'2x" g ) U ( x "  g)-'  

= U(q~-l(x, t),Tr2x)Lbr .... ~)Lb ,, .... s )U(x)- '  

= F(x,  t) a.e. x a.e. t for each g. 

Since G is locally compact,  it follows x ---> F(x,  t) is G invariant for a .e . t .  Hence  

there exists a Borel function A : T ~  ,9(S, m)  satisfying A ( t )  = F(x, t) a.e. x, t. 

Choose r, z E S x Y so that  q~,.y = ~o(r, y , .  ), q~;.~ = ~- ' ( r ,  y, .  ) a.e. y, q~,.z = 

~ ( r , z , . ) ,  ~p;., '=q~-'(r,z,.),  U ( ~ - ' ( r , y , t ) , y ) U ( r , y ) - ' = A ( t )  a.e. t ,y  and 

U(~-l(r ,  z, t), z )U(r ,  z ) - '  = A ( t )  a .e . t .  Hence  U(t, z)U(r ,  z)  -1 = A(q~(r, z, t)) = 

U(q~-~(r, y, r z, t)), y )U(r, y )-' a.e. t, y. The results follows. Q.E.D.  

Choose r, z E S x Y such that:  

(a) ~p,.y = q~(r, y, .  ) a.e. y, 
(b) qC.~ = r  y," ) a.e. y, 

(c) U ( t , y ) U ( r , y )  -1 = U(~p~.~oq~(r,y,t),z)U(r,z) -~ a.e. t, y. 

Define O(t, y)  = U(r, z ) - lU( t ,  y)U(r ,  y) - lU(r ,  z).  Note  0( r ,  y)  = I for all y. 

LEMMA 3. 0 ( t , y ) =  O(r a.e. t,y. 

PROOF. 

LEMMA 4. O((t, y)"  g)  = [J(t, y)L,r a.e. 
~;,~ o ~,,, o b(y, g)o (~ ;.,' o ~..~ ,)-1. 

PROOF. 

O((t, y) .  g) 

= U(r, z ) - lU(( t ,  y ) .  g) Ufr, y .  g)- '  Ufr, z)  

O(t, y) = u(r, z)-'u(t, y)U(r,  y)- '  U(r, z) 

= U(r, z )  -1 U(~;, lo,p(r, y, t), z) U(r, z)-' u(r, z) 

=/ .~(~L'o  ~(r, y, t ) , z )  a.e. t,y. 

t, y .for each g, where a(y,  g) = 

= u(r ,  z)-' u(t, y)U(r, y)-' U(r, z)U(r, z)-' U(r, y)L~,,,,)U(r, y .  g)- '  U(r, z) 

= U(t, y)L,~y.s) a.e. t, y. 

Define q/~5(S • Y,m x v) by q,(s,y)=(~7.~o~p(r,y,s),y). Clearly 

q/-'(s, y) = (,e-1(r, y, ,e,., (s)), y). 

LEMMA 5. O(~-'(s,y)'g)=(a(y,g)-Is, y "g) a.e. s,y for each g. 
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PROOF. 

~(b(y, g)-l  s, y . g)  = (q~,.-~ o q~(r, y . g, b(y, g)-ls) ,  y . g)  

= (q~,7~ o (p,,y .sob(y, g)- '  o (p 7.~ o (p,,~ o r ;.~ o (p,., (s), y .  g) 

g) q~, .~o(p(r ,y ,s) ,y .g) .  Q.E.D. = ( a ( y ,  -1 -1 

Hence we see (s, y), g H, (a(y, g)-ls, y �9 g) defines a Borel almost action of G 

on S • Y conjugate to the action of G on X. 

Define V o n  S x Y b y  V = O o @ - ~ .  

LEMMA 6. V(a(y, g)-ls, y �9 g)  = V(s, y)L~(y,s) a.e. s, y for each g. 

PROOF. 

PROPOSITION 7. 

PROOF. 

V(a(y~ g)~ls~ y .  g) = O(~,-l(a(y,  g)-'s,  y . g)) 

= O(V,-'(s, y ) .  g)  

= O(~b-m(s, y))L~(y.s) a.e. s, y. 

V(s, y) = V(s, z )  a.e. s, y. 

Q.E.D. 

V(s, y) = Oo g,-'(s, y) 

= ~f((~ -l(r~ y, (~r,z (s)), y )  

= 0 ( ~ , ~  o ,;(r, y, ,p-'(r, y, ,p,,z (s))), z )  

: U(~r,  zO~[~r,z(S),Z) : ~--f(S,Z) 

= V(s, z )  

a.e. s, y where the equalities follow by Lemma 3 and (a) and (b). 

We hence have the following situation: the action of G on X is conjugate to 

the action of G on S x Y  defined by ( s , y ) . g = ( a ( y , g ) - l s ,  y . g )  where 

a : Y  x G--~ ~(S, m) is Borel; p is carried by the conjugacy to zr2; and there 

exists a Borel map U : S ---> 5~(S, m) such that U(a(y,  g)-Zs) = U(s)L~(y.s) a.e. s, y 
for each g. 

Let U(s)  = L~, where q~ ~ ~(S, m). There exist Borel functions q and (p-' 

mapping S • S to S such that q~(s, t) = (ps (t), (p-l(s, t) = ~p;'(t) a.e. t a.e.s. Since 

U ( a ( y , g ) - ' s ) =  U(s)L,(~.s) a.e. s,y, q~(s ,a (y ,g ) t )=q~(a(y ,g )  is, t) and 

a(y, g) 'q~-'(s, t) = q~-J(a(y, g) - ' s , t )  a.e. s, y, t. 

LEMMA 8. There exists a Borel function A : S - - > . , ~ ( S , m )  such that 

U(r t)) = A ( t ) U ( t ) U ( s )  a.e. s, t. 
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PROOF. Define  F(t, s, y)  = U(q~-l(s, t))U(s)-aU(t) -~. 

F(t, a (y, g)-% y . g) = U(~o-~(a (y, g)-'s, t)) U(a (y, g ) - ' s )  -~ U(t)- '  

= U ( a ( y ,  g)-lq~-~(s, t))U(a(y,  g)-~s) -~ U ( t ) - '  

= u( o-1(s, U(t)-' 

= F(t,s, y) a.e. t,s, y. 

The result follows by ergodicity. Q.E.D. 

COROLLARY 9. U(q~(s, t)) = A(~o(s, t))-IU(t)U(s) -~ a.e. s, t. 

PROPOSITION 10. U may be modified so that U(~0-~(s, t)) = U(t)U(s) and 
U(r t)) = U(t)U(s) -1 a.e. s, t. 

PROOF. Let  So be a conull Bore l  subset of S such that  q~s = ~o(s,. ), tp~ ~= 

cr �9 ), U(~o-~(s, t)) = A( t )U( t )U( s ) ,  and U(q~(s, t)) = A (q~(s, t))-~U(t)U(s) -~ 
a.e. t if s ~ S o .  

Choose  r E So. Define U(s )  = U(r)-tU(s) .  Hence  ffs = tp;~ ~ tps. T ake  q3(s, t) = 

~o~ -~o ~o(s, t) and (i~--I(s, t)  = ~O-I(s, {~, (t)) .  
Let  s E So. 

t)) = U(r) - '  u( , / , - ' (s ,  (t))) 

= U(r)-'A(q~(r, t))U(~o(r, t))U(s) 

= U(r) 'A(r  t))A(~o(r, t))-' U(t)U(r)-~U(s)  

= U( t )O(s)  a .e . t .  

Hence  the first s ta tement  holds; the second is verified similarly. 

We define Bore l  almost G actions �9 and * on  X = S x S x Y by (s, t, y ) .  g = 

(a(y,g)-ls,  a (y ,g) - ' t , y  .g)  and ( y , t , y ) * g  =(a(y,g)-~s, t ,y) .  

PROPOSmON 11. s ~, q~-~(s, t) is measure class preserving m a.e. t. 

PROOF. Define G and H in #()~,  m x m • v) by G(s, t, y) = (s, q~(s, t), y) and 

H(s, t, y)  = (s, cr t), y). Clearly H -~ = G. Also 

G((s, t, y ) - g )  = G(a(y,  g)-'s, a(y ,  g)-~t, y . g) 

= (a(y ,  g)  ~s, ~p(a(y, g)-~s, a(y ,  g)-It), y .  g) 

= (a(y, g)-ls, q~(s, t), y " g) 

= G ( x , t , y ) * g  a.e. s , t ,y  for  each g. 
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Ir2 : X - o  S gives an ergodic deomposit ion of the action * .. Hence rr2 o G gives 

an ergodic decomposit ion of the action on .~. The map A defined by 

A (s, t, y) = (t, s, y) preserves the action �9 ; hence 7r2 o G o A gives another  ergodic 

decomposit ion of the action .. By uniqueness of ergodic decomposit ions (see 

[12]) there exists a ~ in 5(S,  m)  such that ~ o 7r2o G = 7r2o G oA. Let m x m x v 

be disintegrated over  rr2o G ;  namely m x m x v = f ib ,d in( t )  where each p., is 

concentrated on (7r2o G)-~(t)  m a .e . t .  Then m x m • 1, = f i x ,  , , o d ~ , m ( t )  and 

/z,-,t,~ is concentrated on (~r~oG)-~(~-~( t ) )=(tk~176 a . e . t .  But 

m • m • u = A , ( m  • m • ~) = f A . l z , d m ( t )  and A,/~,  is concentrated on 

A(~r~~ G)-~(t)  = (~r~o G o A  ) - ' ( t )  = (t~o ~r~o G)-~(t)  a . e . t .  Hence  A .p., ~/~,~-,~,~ 

a . e . t .  S i n c e  A = A - ' ,  A ./x, ~ /x , t  o a .e . t .  

Now m x m x v = f m x e, x udm(t ) .  Hence m x m x v ~ 

f H . ( m  x e, x v ) d m ( t )  and H . ( m  x e, x v)  is concentrated on H~r~( t )  = 

(~r: o G)-~(t)  a.e. t. Hence  H . ( m  x e, x v)  ~ Iz, a.e. t. Hence  

A , H , ( m  x e, x v)  ~ H , ( m  x e,,~ x v)  a .e . t .  

Suppose A , H , ( m  x e, x v)  ~ H , ( m  x e,t,) x u).  Then 

m{s  : q~-'(s, t) E E )  > 0 iff (m x e, x v ) ( H r ' ( S  x E x Y ) )  > 0 

iff ( m x  e, x v ) ( H - ~ A - I ( E  • S • Y ) ) > 0  

iff (m x e , , ) x  v ) ( H - I ( E  x S x Y ) ) > O  

itI m ( E )  > 0 .  

Define ff : S - - ~ , 5 ( S , m ) b y  i f ( s ) =  q~,. Let m* = f f ,m.  

Q.E.D.  

PROPOSmON 12. For m a.e. t, the measure class o f  m * is invariant under the 

mappings ~b ~ d/ o q~, and ~b ~ q~, o d/. 

PROOF. Since U ( t ) U ( s ) = U ( q ~ - l ( s , t ) ) ,  ~o, oq~, = q ~  ,,~,)a.e. s,t. Choose t 

such that r  r ~-~( t , s )=q~Tl(s)  a.e. s, and 

s~q~-~( s , t )  preserves the measure class of m. Then m * ( N ) > 0  itt 

m { s : q ~ , ~ N } > 0  iff m { s : q ~ - , , ~ , ) E N } > 0  ill m { s : r 1 6 2  itt 

m * { ~ : r  Also m * ( N ) > 0  itt m { s : r  itt 

m{s  :~0s o~0, E N} > 0 itt m * { ~ :  ~o~0, E N } > 0 .  Q.E.D.  

THEOREM 13. Let  H = {d /E  .~(S, m )  : z ~ ~" o tp and r ~ ~b o r preserve the 

measure class o f  m *. Then H has a second countable locally compact  topology 

compatible with the group structure such that m * is equivalent to Haar  measure on 

H. 
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PROOF. Let  M be the space of probability measures on 5~(S, m)  equipped 

with smallest Borel  structure such that tz ~ / z ( E )  is Borel  for each Borel  set E in 

,~(S, m). Then M is standard Borel  space and the actions of ~(S,  m)  defined on 

M by /.~. ~0(E)=/~(E~o -1) and q~ . / x ( E ) = / z ( ~ o - l E )  are Borel. Furthermore,  

{/x E M :/x ~ m *} is Borel by lemma 1.1 of [11]. Hence H is a Borel  subgroup of 

the Polish group ~(S, m). By Proposition 12, m* is concentrated on H. By 

lemma 8.33 of [15], m * is equivalent to a right invariant or-finite measure on H. 

The result follows by theorem 8.33 of [15]. Q.E.D. 

PROPOSITION 14. a ( y , g ) E H  v a.e. y for each g. 

PROOF. tp--~ ~ o a (y, g) preserves the measure class of m* v a.e. y, for 

~0soa(y,g)=~oaty.sr,, a.e. s ,y and a ( y , g ) E ~ ( S , m ) .  Furthermore,  ~b~ 

a ( y , g ) o ~  is a composition of the maps ~ b ~ b  -1, ~ b ~ b o a ( y , g )  -~= 

~b o a (yg, g-~), and ~b m ~0 -~ of H, and hence preserves the measure class of m * v 

a.e.y.  Q.E.D. 

PROPOSrrloN 15. I[ d/ ~ H, ~o, o ~ = ~o,-,~) m a.e. s. 

PROOF. {~ : ~p, o ~ = ~p,-,t,) a.e. s} is a Borel  subgroup of H which is conull 

since ~o~ o ~o, = ~o~-,,.,~ = ~o~ ,~ a.e. s, t. Q.E.D. 

Define a Boolean action of H on M(S,  m )  by E -  ~b = ~b-~(E). 

PROPOSmON 16. The Boolean action o[ H on M(S,  m )  is ergodic. 

PROOF. Suppose E ~ M ( S , m )  and E.~b  = E  for all ~b~H.  Let  W =  

E x Y E M ( S  x Y , m  x v). Since a ( y , g ) ~ H  a.e. y for each g, W is invariant 

under the ergodic G action (s, y )g  = (a(y, g)-Is, y �9 g). Hence E = 0 or E = S. 

Q.E.D. 

There  is no loss in assuming a(y,  g) is in H lor all y, g for one  can redefine on 

a set of measure 0 and note that {g : ( s , y ) - g  = (a(y,g)-~s ,y  . g )  a.e. s,y} is a 

conull multiplicatively closed subset of (3. We may also assume ~o, is in H for all 

s by redefining on a set of measure 0. 

We now conclude the proof of Theorem 1. ~ is a Borel map from S into H 

such that ~ , m = m *  and ~0~o~-~=~o,~) for any tk in H. Hence  ~3 is H 

equivariant from the Boolean action of H on S to the action of fight translation 

of H on H. In fact, 

-~(E~b) = {s : ~0~ o ~b -~ = ~,,~)~ E} = ~b-~6-~(E) = qS-l(E) �9 ~. 

But any H equivariant map into the H space H is essentially one-to-one. 

Define J : S x Y - - ~ H  x Y by J(s, y) = (~(s) ,  y). Then J , ( m  • v) = m* x v, J 
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is essentially one-to-one, and J((s, y) .  g) = J(a(y ,  g)-~s, y �9 g) = 

(~at~.~ '~,Y . g ) = ( ~ , o a ( y , g ) , y  " g ) = ( ~ a ( y , g ) , y  .g) a.e. s,y for each g. This 

concludes the proof. 

The uniqueness theorem 

Theorem 2 follows from Theorem 1 and the following proposition. Let H and 

K be second countable locally compact groups; let (Y, v) be a G space; and let 

a : Y • G ~ H and b : Y • G ~ K be cocycles. Suppose the almost actions of G 

on H x  Y and K • Y defined by ( h , y ) - g  = ( h a ( y , t ) , y  .g )  and ( k , y ) . g  = 

(kb(y, g), y �9 g) are ergodic. 

PROPOSITION. 

(h, y) ~ y and 

con/ugate. 

I[ the unitary representations o / Y  • G induced by the extensions 
( k , y ) ~ y  are equivalent, the G spaces H x Y and K •  Y are 

PROOF. By ~ ( H )  we shall mean ~(H,  Haar measure). The representation of 

Y x G induced by (h, y) ~ y is (y, g) ~ Ra~r.8~ where Ra~y.s~ is the unitary operator 

on L2(H) defined by Ra~y.~f(h)=f(ha(y,g)). Hence Ra~y.~=L,~,,.,,_~ where 

rh (h') = h'h. Similarly (y, g) ~ Rbt~.s) = L,~,,,,~ 1 is the unitary representation of 

Y • G induced by extension (k, y) ~ y. 

Since the induced representations are equivalent, there exists a Borel map 

y ~ W(y) where W(y) is a unitary from L2(H) to L2(K) which satisfies 

W(y)Ro~.~ = Rb~y,~)W(y "g) a.e. y for each g. 

Define U(k , y )=RkW(y ) .  Set d~ (k ,y )=  U(k,y)L|  -~. rill is G 

invariant. By ergodicity, there exists a unitary V from L2(K) to L2(H) such that 

VU(k, y)L~(H)U(k,  y)-~ V -~ = L~(H) a.e. k, y. Hence for a.e. k, y there exists a 

uk.~ in L~(H) with ]uk.y I ~ 1 and a ~k,~ in 5 ( H )  such that VU(k, y) = M~.L,~.. 
But VU((k, y) .  g ) =  VRkR~,y.~)W(y . g)= VRkW(y)R~ty.~)= U(k, y)R~,y.s) a.e. 

y,g. Hence M,,~., =M~.,~ and ~p~k.y).~ = q ~  o r~t,.sj., a.e. k ,y  for each g. 

Therefore we may assume VU(k,y)=L,~.~ for all k and y and ~tk, y)~= 

q~k.y ~ ra~y.~, a.e. k, y for each g. Hence ~ y ( h ) a ( y ,  g) = -~ q~ck., s(h)a.e,  h a.e. k, y 

for each g. 

Choose ho such that ~p~,~(ho)a(y, g ) =  ~0~-~,).g(h0) a.e. k, y, g. Define F(k, y ) =  

r ~,~ho~ ' o ~ ~.~. Then 

F(k ,y ) .g  = r . . . . . . .  - - I  = I --1 = ~y,g) *k,~ho) q~k,y).~ r,i.~(ho) ro~,~ 'ra~,s~q~k.~ F(k ,y )  a.e. k,y. 

By ergodicity, there exists an A in # ( H )  such that F(k, y) = A a.e. k, y. Hence 

Atpk.y = r,~(ho) -' a.e. k, y. Define c(k, y) = ~0~y(h0). Then Aq~k.~ = r~.~)-, a.e. k, y. 
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We then have LAVU(k,  y) =/Ltk.y~ a.e. k, y. Redefining V to be LAV, we see 

there exists a unitary V from L2(K) to L2(H) such that VREW(y) =/Ltk.y~ a.e. 

k,y. By symmetry there exists a V' from L2(H) to L2(K) such that 

V'RhW(y)  -~ = Rdth.y~ a.e. where d : H • Y--.* K is Borel. 

We claim VRkW(y)  =/Lt~y~ for all k a.e .y.  It suffices to note that if Ra. ~ L,  

strongly, then L,  = Ra for some a. Also one has W ' R h W ( y )  -1 = R4th, y~ for all h 

a .e .y .  

Hence V V ' R h W ( y )  -~= VRdth, y)= VRa(h,y)W(y)W(y) -1= Rctdth, y),y~W(y) -l 

for all h a . e . y .  Hence WW'Rh = R c(d(h,y),y) for all h a . e . y .  Hence V V ' =  

R,r y~.y~h-' = Rho a.e.y.  So c(d(h, y), y) = hoh. Similarly d(c(k, y), y) = kok a.e. 

y. By redefining V to be Rh~ V, one can see one may assume h0 = e. Hence 

c(d(h, y), y) = h for all h a . e . y .  But VRkW(y)  = R,~k.y~ and V ' R h W ( y )  -1 = 

/Lth.y~ for all k and h a.e: y implies VR~ch.~W(y) = Rh for all h a .e .y .  Hence 

V ' =  V -1 and d(c(k, y), y) = k for all k a.e.y.  Hence cy :K---*H and dy :H---*K 

defined by c y ( k ) = c ( k , y )  and d ~ ( h ) = d ( h , y )  are Borel isomor- 

phism inverse to one another for a .e .y .  Furthermore, since VR kbty.g~ W(y " g) = 

VRkW(y)R~t~,g~ a.e. k, y, c(kb(y, g), y �9 g) = c(k, y)a(y,  g) a.e. k, y for each g. 

Let mK be a right invariant Haar measure on K. We let ~ ( H )  be the space of 

all measures on H finite on compact sets. Let ~ ( H )  have smallest Borel 

structure such that /x H,/x(E) is Borel for any Borel subset of H.. Since H is 

second countable and locally compact, .,r is a standard Borel space. Define 

m (h, y) = (cy ,mr )h - I  where/zh  -~(E) = / z  (Eh). Then h, y ~ m (h, y) ~ ~ (H) is 

Borel. Furthermore, 

m(ha(y,  g), y . g ) (E)  = (cy.g, mK)(Eha(y, g)) 

mr{k  : c(k, y �9 g) ~ Eha(y, g)} 

mr{k : c(kb(y, g), y . g) E Eha(y, g)} 

mK{k : c(k~ y) E Eh} 

m(h, y)(E) 

a.e. h, y. Hence there is an mn E .,//(H) such that re(h, y) = mH a.e. h, y. Hence 

Cy.mrh -~= m ,  a.e. h a . e .y .  Therefore Cy,mKh -~= mn for all a . e .y .  Hence 

Cy..m~: = m~ a.e. y and mu is right invariant; hence m ,  is a Haar measure. 

Define C : K x Y-.-~H x Y by C(k, y) = (c(k, y), y). Then C is a Borel mapping 

which is essentially one-to-one, and C , ( m r  x v )=  mu • v. Furthermore 
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C((k ,  y ) .  g )  = ( c ( k b ( y ,  g),  y . g) ,  y . g )  

= (c (k ,  y ) a  (y, g) ,  y .  g )  

= C ( k , y ) . g  a.e. k , y  

H e n c e  t h e  ac t ions  a r e  c o n j u g a t e .  

for  e a c h  g. 

Q . E . D .  

REFERENCES 

1. E. G. E.ffros, The Borel space of yon Neumann algebras on a separable Hilbert space, Pacific J. 
Math. 15 (1964), 1153-1164. 

2. R. Fabec, Normal ergodic quasi-invariant actions, preprint. 
3. G. W. Mackey, The Theory of Group Representations, University of Chicago, Summer 1955. 
4. G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 

265-311. 
5. G. W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327-335. 
6. G. W. Mackey, Ergodic theory, group theory, and differential geometry, Proc. Nat. Acad. Sci. 

U.S.A. 50 (1963), 1184-1191. 
7. G. W. Mackey, Ergodic transformations with a pure point spectrum, Illinois J. Math. 8 (1964), 

593-600. 
8. G. W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207. 
9. C. C. Moore, Extensions and cohomology for locally compact groups, III, Trans. Amer. Math. 

Soc. 221 (1976), 1-33. 
10. A. Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253-322. 
11. A. Ramsay, Boolean duals of virtual groups, J. Functional Analysis 15 (1974), 56-101. 
12. A. Ramsay, Subobjects of virtual groups, preprint. 
13. C. Series, Ergodic actions of product groups, Harvard Ph.D. Thesis, 1976. 
14. V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 

(1963), 191-220. 
15. V. S. Varadarajan, Geometry of Quantum Theory, Vol. II, Van Nostrand, Princeton, N.J., 

1970. 
16. J. J. Westman, Virtual group homomorphisms with dense range, Illinois J. Math. 20 (1976), 

41-47. 
17. R. J. Zimmer, Compact nilmanifold extensions of ergodic actions, Trans. Amer. Math. Soc. 

223 (1976), 397-406. 
18. R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. 
19. R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), 

555-588. 
20. R. J. Zimmer, Normal ergodic actions, J. Functional Analysis 25 (1977), 286--305. 

MATHEMATICS DEPARTMENT 
LOUISIANA STATE UNIVERSITY 

BATON ROUGE, LA 70803 USA 


